DPP - Daily Practice Problems

Name :	Date :
Start Time :	End Time :
CHENI SYLLABUS : Aldehydes and Ketones - I	STRY 52 I: Properties of Aldehydes and Ketones

Max. Marks: 120

Time : 60 min.

🕀 www.studentbro.in

GENERAL INSTRUCTIONS

- The Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.
- You have to evaluate your Response Grids yourself with the help of solution booklet.
- Each correct answer will get you 4 marks and 1 mark shall be deduced for each incorrect answer. No mark will be given/ deducted if no bubble is filled. Keep a timer in front of you and stop immediately at the end of 60 min.
- The sheet follows a particular syllabus. Do not atlempt the sheet before you have completed your preparation for that syllabus. Refer syllabus sheet in the starting of the book for the syllabus of all the DPP sheets.
- After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to analyse your performance and revise the areas which emerge out as weak in your evaluation.

DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.

Q.1 When *m*-chlorobenzaldehyde is treated with 50% KOH solution, the product(s) obtained is (are)

RESPONSE GRID 1. abcd

Space for Rough Work

CLICK HERE

DPP/C(52)

Acetophenone

Acetyl acetone

H₂/Pd-BaSO₄

Bromoform test

2-hydroxybutanal

3-hydroxybutanol

Benzaldehyde

 $1^{\circ} > 2^{\circ} > 3^{\circ}$

Tollen's test

NH₂-NH₂/C₂H₅ONa

4.	abcd	5. abcd	6.	abcd
9.	abcd	10.abcd	11.	abcd
14	.abCd	15. abcd	16.	abcd

Space for Rough Work

8. (a)b)C)d)

13.(a)(b)(c)(d)

Get More Learning Materials Here :

7. abcd

12.abCd

RESPONSE

GRID

CLICK HERE

DPP/ C (52)

- Q.17 Which of the following will form two isomers with semicarbazide?
 - (a) Benzaldehyde (b)
 - (c) Benzoquinonc (d) Benzophenone
- Q.18 Contents of three bottles were found to react
 - (i) Neither with Fehling's solution nor with Tollen's reagent

Acetone

- (ii) Only with Tollen's reagent but not with Fehling's solution
- (iii) With both Tollen's reagent and Fehling's solution. If they contained either acetaldehyde or acetone or benzaldehyde, which bottle contained which
- (a) ln (i) benzaldchyde, in (ii) ethanal and in (iii) propanone
- (b) In (i) benzaldehyde, in (ii) propanone and in (iii) ethanal
- (c) In (i) propanone, in (ii) benzaldehyde and in (iii) ethanal
- (d) $\ln(i)$ propanone, in (ii) ethanal and in (iii) benzaldehyde
- **Q.19** An organic compound 'A' has the molecular formula $C_{3}H_{6}O$, it undergoes iodoform test. When saturated with dil. HCl it gives 'B' of molecular formula $C_{9}H_{14}O$. A and B respectively are
 - (a) Propanal and mesitylene
 - (b) Propanone and mesityl oxide
 - (c) Propanone and 2,6-dimethyl-2, 5-heptadien-4-one
 - (d) Propanone and mesitylene oxide
- Q.20 Aldehydes and ketones can be reduced to corresponding hydrocarbons by
 - (a) Refluxing with water
 - (b) Refluxing with strong acids
 - (c) Refluxing with soda amalgam and water
 - (d) Refluxing with zinc amalgam and concentrated HCl
- **Q.21** Grignard's reagent reacts with ethanal (acetaldehyde) and propanone to give
 - (a) Higher aldehydes with ethanal and higher ketones with propanonc
 - (b) Primary alcohols with ethanal and secondary alcohols with propanone
 - (c) Ethers with ethanal and alcohols with propanonc
 - (d) Secondary alcohols with ethanal and tertiary alcohols with propanone

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes:

- (b) 1 and 2 arc correct
- (c) 2 and 4 are correct (d) 1 and 3 are correct

(a) 1, 2 and 3 are correct

- Q.22 Which of the following will give aldol condensation?
 - (1) Acetaldehyde (2) Propanaldehyde
- (3) Tridcuteroacctaldehydc (4) Benzaldehydc**O.23** Which gives difference between aldehyde and ketone?
 - (1) Fehling's solution (2) Tollen's reagent
 - (3) Schiff's reagent (4) Grignard reagent
- Q.24 Which arc true about acetophenone?
 - (1) Reacts to form 2, 4-dinitrophenyllydrazone
 - (2) On oxidation with alkaline KMnO₄ followed by hydrolysis gives benzoic acid
 - (3) Reacts with I_2 /NaOH to form iodoform
 - (4) Reacts with Tollen's reagent to form silver mirror

DIRECTIONS (Q.25-Q.27) : Read the passage given below and answer the questions that follows :

In the following reaction sequence, products l, J and L are formed. K represents a reagent.

Q.25 The structure of the product I is -

RESPONSE	17.abcd	18. abcd	19.abcd	20.abcd	21. abcd
Grid	22.abcd	23.abCd	24.abCd	25.abcd	

- Space for Rough Work -

Get More Learning Materials Here :

DPP/C (52)

Q.26 The structures of compounds J and K, respectively, are

Q.27The structure of product L is

DIRECTIONS (Q. 28-Q.30) : Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.
- Q.28Statement 1: CH₃CHO reacts with NH₃ to form urotropine.

Statement 2 : Urotropine is used as medicine in case of urinary troubles.

Q.29 Statement 1 : α-Hydrogen atom in aldehydes and ketones are acidic.

Statement 2 : The anion left after the removal of α -hydrogen is stabilized by inductive effect.

Q.30 Statement 1 : 2, 2-Dimethylpropanal undergoes Cannizzaro reaction with concentrated NaOH. Statement 2 : Cannizzaro reaction is a disproportionation reaction.

 Response Grid
 26.abcd
 27.abcd
 28.abcd
 29.abcd
 30.abcd

DAILY PRACTICE PROBLEM SHEET 52 - CHEMISTRY					
Total Questions	30	Total Marks	120		
Attempted		Correct			
Incorrect		Net Score			
Cut-off Score	32	Qualifying Score	52		
Success Gap = Net Score – Qualifying Score					
Net Score = (Correct × 4) – (Incorrect × 1)					

_ Space for Rough Work _

Get More Learning Materials Here :

$$2 \underbrace{\bigcirc}_{\text{Cannizzaro reaction}} \underbrace{\bigcirc}_{\text{Cannizzaro reaction}} \underbrace{\bigcirc}_{\text{CH}_{2}\text{CH}_{2}\text{CHO}_{-}} \underbrace{\bigcirc}_{\text{CH}_{2}\text{CHO}_{+}} \underbrace{\frown}_{\text{CH}_{2}\text{CHO}_{+}} \underbrace{CH}_{2}\text{CHO}_{+} \underbrace{CH}_{2}$$

- (b) Fehling solution is a weak oxidising agent, therefore unable to oxidise benzaldehyde.
- 15. (b) $R \overset{+\delta}{C} = H$; Susceptibility of nucleophilic attack on

aldehyde is decreased by electron releasing effect of R group. Decreasing order of aldehyde towards nucleophilic attack is $1^{\circ} > 2^{\circ} > 3^{\circ}$ R group.

NaOH(aq)

C₆H₅CH₂OH+ HCOONa Benzyl alcohol Sod- formate

 $\begin{array}{c} OH & O\\ \mid & \parallel\\ C_6H_5 - CH_- & C_-\\Benzoin \end{array} C_6H_5$

ale NaCN

Get More Learning Materials Here :

C₆H₅CHO+ HCHO Benzaldehyde Formaldehyde

(c) $\begin{bmatrix} \| & \| \\ C_6H_5 - C - H + H - C - C_6H_5 \end{bmatrix}$

7.

CLICK HERE

»

DPP/C (52)

16. (d) Tollen's reagent oxidizes the compound having aldehyde group like glucose and also oxidizes

 a - hydroxyketones, -COCH₂OH, group as in fructose.

17. (a)
$$C_6H_5CH = O + H_2NNHCONH_2$$

 $\rightarrow C_6H_5CH = NNHCONH_2$ Semicarbazone

The product shows E and Z configurations.

18. (c)

19. (c) The compound A with formula C_3H_6O gives iodoform test, it is propanone. It forms a compound B having carbon atoms three times to the number of carbon atoms in propanone, it is 2, 6-dimethyl-2, 5-heptadien-4-one.

$$CH_{3} - C = O + CH_{3} - C - CH_{3} + O = C - CH_{3} \xrightarrow{dil.HCl} \rightarrow (A)$$

$$CH_{3} O CH_{3} \xrightarrow{(A)} CH_{3} - C = CH - C - CH = C - CH_{3} \xrightarrow{(A)} CH_{3} O CH_{3} \xrightarrow{(A)} CH_{3} O CH_{3} \xrightarrow{(B)} CH_{3} O CH_{3}$$

20. (d) RCHO+4H
$$\xrightarrow{\text{Zn-IIg/IIC1}}_{\text{(Clemmensen reduction)}}$$
R -CH₃+H₂O
R C = O + 4H $\xrightarrow{\text{Zn-Hg/IIC1}}$ R CH₂+H₂O
21. (d) CH₃ - MgBr + CH₃ - C - H $\xrightarrow{\text{H}_2\text{O}}$

$$CH_3 - CH - OH + MgBr(OH)$$

$$CH_{3}MgBr + CH_{3} - C = O \xrightarrow[]{H_{2}O} \\CH_{3}$$

$$CH_3$$

 CH_3
 CH_3
 $HMgBr(OH)$
 CH_3

22. (a) Deuterium behaves like H and hence trideuteroacetaldchyde also undergoes aldol condensation but benzaldchyde does not since it has no α -hydrogen.
 Thus (1), (2) and (3) are correct choices.

Thus (1), (2) and (3) are correct choices.

23. (a) Fehling solution ⇒ Alkalinc CuSO₄+ Na -K tartarate Tollen's reagent ⇒ NH₄●H + AgN●₃ Schiff's reagent ⇒ p-rosaniline hydrochloride or magneta
Reagents in (1), (2) and (3) are used to distinguish between aldebudge and leatenes. Aldebudge reagte with

between aldehydes and ketones. Aldehydes reacts with all these reagents while ketones do not react

24. (a) Acctophenone is a ketone and does not react with Tollen's reagent to give silver mirror.

25. (d)
$$CH_3 - CH_2 - C \equiv C - CH_2 - CHO$$

Hex-3-ynal
 $\xrightarrow{1.NaBH_4} CH_3 - CH_2 - C \equiv C - CH_2 - CH_2Br$
or
Mc $\xrightarrow{Or} CH_2Br$

Ŀ

Sodium borohydride reduces –CHO selectively into – CH_2OH

26. (a) Me CH₂Br
"I"

$$\stackrel{1.Mg/Ether}{2.CO_2}$$
 Me CH₂COOH
"J"
 $\stackrel{"K"}{\longrightarrow}$ Me CH₂COCl
Thus "K" is SOCl₂
27. (c) Me CH₂COCl
 $\stackrel{"J"}{\longrightarrow}$ Me CH₂COCl
 $\stackrel{"J"}{\longrightarrow}$ He CH₂COCl

It is Rosenmund reaction. Simultaneously the reagent H_2 -Pd also reduces carbon-carbon triple bond to double bond (*syn* -addition) giving *cis* product.

 (c) Urotropine is formed by the reactions of HCHO with NH₃

 $6HCHO+4NH_3 \rightarrow (CH_2)_6N_4+6H_2O$

- 29. (d) The anion left after the removal of * -hydrogen is stabilized by resonance effect.
- 30. (b) Aldehydes which do not contain a -hydrogen undergo Cannizzaro reaction.

$$H_{3}C - C^{*} - CHO$$

$$CH_{3}$$

$$CH_{3}$$

2.2- dimeihylpropanal (no . -hydrogen)

100

CLICK HERE

